Aggregating Buoy Data using dplyr and tidyr

Set the working directory. Make a folder ../G18 somewhere on your computer. You will be using this directory for the rest of the day.

Mac: `setwd("~/Dropbox/G18")`
PC: `setwd("C:/Users/hilarydugan/Dropbox/G18")`

Load required libraries

```r
library(readr)  # read in data
library(dplyr, quietly = T)  # clean data
library(tidyr)  # clean data
library(rLakeAnalyzer)  # lake analyses
library(lubridate)  # working with time
library(LakeMetabolizer)  # lake analyses
```

Load datasets

```r
met = read_csv('data/Sparkling2014domet_3month.csv')
```

There is an error that states that the function expects the column ‘sampletime’ to be a ‘date’. Looking at the file, ‘sampletime’ is a time. Therefore, tell the function `read_csv` the class of sampletime should be a character.

Can use a compact string representation where each character represents one column: c = character, i = integer, n = number, d = double, l = logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column

```r
met = read_csv('data/Sparkling2014domet_3month.csv', col_types = cols(sampletime = 'c'))
buoy = read_csv('data/Sparkling2014wtemp_3month.csv', col_types = cols(sampletime = 'c'))
```

Aggregate buoy data

Use dplyr to convert data from minute to hourly.
buoyHourly <- buoy %>%
mutate(hour = hour(sampledate)) %>% # create new column for hour of timestamps
mutate(date = as.Date(sampledate)) %>% # create new column for date of timestamps
group_by(date, hour, depth) %>% # group the dataset by date and hour (hourly data)
s summarise(wtemp_h = mean(wtemp, na.rm = T), datetime = first(sampledate)) %>% # take
the mean water temperature and first sampled date of each group
ungroup() %>% # ungroup data
dplyr::select(datetime, depth, wtemp_h)

Use tidy to convert data from long to wide format.

buoyHourlyWide <- buoyHourly %>% # select only three columns
 spread(depth, wtemp_h) # convert dataset from 'long' format to 'wide'

Look at the first three rows of our data

head(buoyHourlyWide, 3)

Source: local data frame [3 x 29]
##
datetime 0 0.25 0.5 0.75 1
<time> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2014-05-18 12:00:00 9.437500 8.279333 9.314333 9.285833 9.266333
3 2014-05-18 14:00:00 9.922167 8.378333 9.737500 9.652000 9.544833
Variables not shown: 1.5 <dbl>, 2 <dbl>, 2.5 <dbl>, 3 <dbl>, 3.5 <dbl>, 4
<dbl>, 4.5 <dbl>, 5 <dbl>, 5.5 <dbl>, 6 <dbl>, 6.5 <dbl>, 7 <dbl>, 7.5
<dbl>, 8 <dbl>, 9 <dbl>, 10 <dbl>, 11 <dbl>, 12 <dbl>, 13 <dbl>, 14
<dbl>, 15 <dbl>, 16.5 <dbl>, 18 <dbl>.

Convert the colnames of the data to include ‘wtr_’

colnames(buoyHourlyWide)[-1] = paste('wtr_', colnames(buoyHourlyWide)[-1], sep = ')
names(buoyHourlyWide)

[1] "datetime" "wtr_0" "wtr_0.25" "wtr_0.5" "wtr_0.75" "wtr_1"
[7] "wtr_1.5" "wtr_2" "wtr_2.5" "wtr_3" "wtr_3.5" "wtr_4"
[13] "wtr_4.5" "wtr_5" "wtr_5.5" "wtr_6" "wtr_6.5" "wtr_7"
[19] "wtr_7.5" "wtr_8" "wtr_9" "wtr_10" "wtr_11" "wtr_12"
[25] "wtr_13" "wtr_14" "wtr_15" "wtr_16.5" "wtr_18"

Plotting buoy data

Plot the water temperature profile of our data

wtr.heat.map(buoyHourlyWide)
Aggregate met data

Use the same process for the meteorological data

```r
metHourly <- met %>%
  dplyr::select(sampledate,air_temp,rel_hum,wind_speed_2m,par,opt_wtemp,opt_do_raw) %>%
  mutate(hour = hour(sampledate)) %>%
  mutate(date = as.Date(sampledate)) %>%
  group_by(date,hour) %>%
  summarise_each(funs(mean(., na.rm = TRUE))) %>%
  ungroup() %>%
  dplyr::select(-date,-hour)
```

Look at the first three rows of our data

```r
head(metHourly,3)
```
Because we took the mean of the sampledate column. Let's round that column to the nearest hour.

```r
metHourly$sampledate = as.POSIXct(round(metHourly$sampledate,'hours'))
head(metHourly,3)
```

Output new data

Write data to .csv

```r
write.csv(buoyHourly,'data/Sparkling2014wtemp_hourly_long.csv',row.names = F)
write.csv(buoyHourlyWide,'data/Sparkling2014wtemp_hourly_wide.csv',row.names = F)
write.csv(metHourly,'data/Sparkling2014domet_hourly.csv',row.names = F)
```